Batch-to-Batch Variability of a Brand Product and Its Implications on Generic Bioequivalence Standards: PK Variability of Advair Diskus and Its Implications on BE Assessment Criteria for Generic Drugs

Leslie Z. Benet, PhD
Professor of Bioengineering and Therapeutic Sciences
Schools of Pharmacy and Medicine, UCSF

3rd MENA Regulatory Conference on BE, Biowaivers, Bioanalysis and Dissolution

Amman September 24, 2018
Let me acknowledge

- All of my experience on this topic comes from my activities as a consultant to Oriel Therapeutics, Inc., an indirect wholly-owned subsidiary of Novartis AG.
- The studies were directed by Elise Burmeister Getz, PhD, Director, Clinical Pharmacology at Oriel.
- Collaborators on the published studies include: Kevin J Carroll, PhD, KJC Statistics, Stockport, Chesire, UK; Byron Jones, PhD and Johanna Mielke, PhD, Novartis Pharma, Basel, Switzerland
- I am grateful to Dr. Burmeister Getz for allowing me to adapt a number of her slides, including those for her presentation at the meeting of the American College of Clinical Pharmacology, yesterday.
Publications

OIDP (oral inhaled drug product) pharmacokinetics present novel challenges for generic development

1. Manufacturing batches differ substantially with regard to pharmacokinetic performance

2. Batch variability impacts bioequivalence testing

3. Bioequivalence methodology should be adapted to account for batch variability
History of industry/regulatory discussion of batch-to-batch PK diversity ...

2010: “Batch-to-batch variability of R was therefore a topic of discussion at the Workshop.”¹

2013: “Should PK be treated as highly variable ... including variability introduced batch to batch.”²

2014: “Interpreting PK for Inhalation BE - How to approach batch to batch variability in the reference product?”³

2015: “The choice of the R batch might affect the outcome of the PK BE study.”⁴

... yet PK batch variability is not accounted for in current guidances

Fluticasone propionate / salmeterol; Sep 2013
(Advair Diskus DPI)

Fluticasone furoate; Apr 2016
(ARNUITY Ellipta DPI)

Fluticasone furoate / vilanterol; Apr 2016
(BREO Ellipta DPI)

Indacaterol; Apr 2016
(Arcapta Neohaler DPI)

Mometasone furoate; Apr 2016
(Asmanex HFA)

Pharmacokinetic (PK) BE Study

The following PK BE study is recommended to be conducted for all strengths of the T and R products.

Design: Single-dose, two-way crossover
Objective #1:

Confirm the presence of batch-to-batch pharmacokinetic variability for an example OIDP
ADVAIR Diskus 100/50 chosen as an example OIDP

Low systemic availability
Fluticasone propionate absolute bioavailability of 5.5%\(^1\) − 17%\(^2,3\)
following inhalation of 1 mg in healthy volunteers

Wide in-vitro acceptance range
Fine particle mass\(^4\):
- 15 – 30 µg (fluticasone propionate)
- 7 – 13 µg (salmeterol)

1 **Advair Diskus Prescribing Information.** Research Triangle Park, NC. GlaxoSmithKline.
4 **USP 39 NF 34 Fluticasone Propionate and Salmeterol Inhalation Powder.** Official May 1, 2016.
Between-batch PK variability:
fluticasone propionate

single-dose, 4-sequence, 4-period crossover in 30 healthy adult subjects

<table>
<thead>
<tr>
<th>Geometric Mean Ratio</th>
<th>Estimate</th>
<th>90% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch 1A vs Batch 1B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max}</td>
<td>99%</td>
<td>87% – 112%</td>
</tr>
<tr>
<td>$AUC_{(0-t)}$</td>
<td>100%</td>
<td>92% – 109%</td>
</tr>
<tr>
<td>Batch 1 vs Batch 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max}</td>
<td>65%</td>
<td>59% – 72%</td>
</tr>
<tr>
<td>$AUC_{(0-t)}$</td>
<td>77%</td>
<td>72% – 83%</td>
</tr>
<tr>
<td>Batch 1 vs Batch 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max}</td>
<td>76%</td>
<td>69% – 85%</td>
</tr>
<tr>
<td>$AUC_{(0-t)}$</td>
<td>81%</td>
<td>75% – 87%</td>
</tr>
<tr>
<td>Batch 2 vs Batch 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max}</td>
<td>118%</td>
<td>104% – 133%</td>
</tr>
<tr>
<td>$AUC_{(0-t)}$</td>
<td>105%</td>
<td>96% – 114%</td>
</tr>
</tbody>
</table>

![Graph showing plasma concentration over time for different batches and replicates.](image-url)
Between-batch PK variability:
salmeterol

single-dose, 4-sequence, 4-period crossover in 30 healthy adult subjects

<table>
<thead>
<tr>
<th>Geometric Mean Ratio</th>
<th>Estimate</th>
<th>90% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch 1A vs Batch 1B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max}</td>
<td>95%</td>
<td>83% – 109%</td>
</tr>
<tr>
<td>$AUC_{(0-t)}$</td>
<td>94%</td>
<td>87% – 101%</td>
</tr>
<tr>
<td>Batch 1 vs Batch 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max}</td>
<td>63%</td>
<td>56% – 72%</td>
</tr>
<tr>
<td>$AUC_{(0-t)}$</td>
<td>77%</td>
<td>72% – 82%</td>
</tr>
<tr>
<td>Batch 1 vs Batch 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max}</td>
<td>80%</td>
<td>71% – 90%</td>
</tr>
<tr>
<td>$AUC_{(0-t)}$</td>
<td>81%</td>
<td>76% – 87%</td>
</tr>
<tr>
<td>Batch 2 vs Batch 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max}</td>
<td>126%</td>
<td>110% – 145%</td>
</tr>
<tr>
<td>$AUC_{(0-t)}$</td>
<td>106%</td>
<td>98% – 114%</td>
</tr>
</tbody>
</table>

Plasma concentration (pg/mL) vs Time (h)
Second clinical study confirms between-batch PK variability: fluticasone propionate

single-dose, 4-sequence, 4-period crossover in 24 healthy adult subjects

<table>
<thead>
<tr>
<th>Geometric Mean Ratio</th>
<th>Estimate</th>
<th>90% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch 1 vs Batch 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max}</td>
<td>66%</td>
<td>60% – 73% *</td>
</tr>
<tr>
<td>$AUC_{(0-t)}$</td>
<td>68%</td>
<td>62% – 74% *</td>
</tr>
<tr>
<td>Batch 1 vs Batch 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max}</td>
<td>68%</td>
<td>61% – 75% *</td>
</tr>
<tr>
<td>$AUC_{(0-t)}$</td>
<td>76%</td>
<td>70% – 83%</td>
</tr>
<tr>
<td>Batch 2 vs Batch 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max}</td>
<td>102%</td>
<td>92% – 113%</td>
</tr>
<tr>
<td>$AUC_{(0-t)}$</td>
<td>112%</td>
<td>103% – 123%</td>
</tr>
</tbody>
</table>

*batch-to-batch PK bioequivalence
Second clinical study confirms between-batch PK variability: salmeterol

single-dose, 4-sequence, 4-period crossover in 24 healthy adult subjects

<table>
<thead>
<tr>
<th>Geometric Mean Ratio</th>
<th>Estimate</th>
<th>90% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch 1 vs Batch 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max}</td>
<td>63%</td>
<td>55% – 71%</td>
</tr>
<tr>
<td>$AUC_{(0-t)}$</td>
<td>71%</td>
<td>64% – 79%</td>
</tr>
<tr>
<td>Batch 1 vs Batch 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max}</td>
<td>71%</td>
<td>62% – 81%</td>
</tr>
<tr>
<td>$AUC_{(0-t)}$</td>
<td>78%</td>
<td>70% – 87%</td>
</tr>
<tr>
<td>Batch 2 vs Batch 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{max}</td>
<td>113%</td>
<td>99% – 129%</td>
</tr>
<tr>
<td>$AUC_{(0-t)}$</td>
<td>110%</td>
<td>99% – 122%</td>
</tr>
</tbody>
</table>

*batch-to-batch PK bioequivalence
Objective #1: Confirm the presence of batch-to-batch pharmacokinetic variability for an example OIDP

Result:
Advair Diskus 100/50 demonstrates batch-to-batch pharmacokinetic variability. An approved and marketed example drug product is sometimes bio-inequivalent when compared to itself across batches.
Objective #2:

Assess the impact of batch-to-batch pharmacokinetic variability on bioequivalence testing
The bioequivalence test is based on the precision of the estimated treatment difference

The true treatment difference is unknown.

\[\text{Ln } 0.80 \leq \left[\text{mean} (\text{Ln Cmax}_T) - \text{mean} (\text{Ln Cmax}_R) \right] \leq \text{Ln } 1.25 \]

BE is based on an estimate of the treatment difference, and the precision of this estimate

\[\text{Ln } 0.80 \leq \left[\text{90\% confidence interval} \right] \leq \text{Ln } 1.25 \]

Bioequivalence is concluded when the precision of the estimated treatment difference indicates there is less than a 5\% chance that the current data arise from two non-equivalent products.
But the 2-way crossover ignores an important additional variance component

\[\sigma_e^2 \]: within-subject, within-batch residual error variance
\[\sigma_e^2 = 0.06 \text{ (within-subject CV = 25\%)} \]

\[\sigma_b^2 \]: within-subject, between-batch variance

In the proof-of-concept studies,
\[\sigma_b^2 = 0.05 - 0.06 \text{ (~25\% batch variability)} \]
Here we randomly selected 8 reference batches and compared 2 in each cohort, resulting in failing a two-way PK bioequivalence study in 3 of 4 attempts.

\[\sigma_c^2 = 0.037 \text{ (19\% within subject CV)} \]
\[\sigma_b^2 = 0.020 \text{ (14\% batch variability)} \]

Oriel Therapeutics Study OTT329/107
Now let’s consider the statistics
Regulatory convention recommends ≤ 5% chance of incorrectly concluding BE

In BE testing, null hypothesis tested at an assumed T/R of 1.25 (or 0.80)

Estimated T/R Ratio

Expected T/R ratio distributions from a 2-way crossover BE study; N=26 subjects, 20% residual error.
If σ_b^2 is ignored, Type I error increases

$\sigma_e^2 = 0.04, \sigma_b^2 = 0.03$

Increased probability (27%) that the observed T/R will fall in the range that passes BE

$\sigma_e^2 = 0.04, \sigma_b^2 = 0$

5% probability that the observed T/R will fall in a range that passes BE when true T/R = 1.25 (or 0.80)

In BE testing, null hypothesis tested at an assumed T/R of 1.25 (or 0.80)

Expected T/R ratio distributions from a 2-way crossover BE study; N=26 subjects, 20% residual error, two levels of between-batch variance. Variance estimates are assumed to be identical in the T and R products.
PK batch variability limits the value of a conventional two-way crossover PK BE study

Increased rate of falsely rejecting true BE

Increased rate of falsely accepting nonBE

Impact of ignoring σ_b^2 is even greater

Estimated T/R Ratio

Expected T/R ratio distributions from a 2-way crossover BE study. Variance estimates are assumed to be identical in the T and R products.

<table>
<thead>
<tr>
<th>N</th>
<th>σ_e^2</th>
<th>σ_b^2 range</th>
<th>Type I error rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>0.04</td>
<td>0.84 – 1.19</td>
<td>$\sigma_b^2=0$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>26</td>
<td>0.04</td>
<td>0.88 – 1.14</td>
<td>$\sigma_b^2=0.03$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5%</td>
</tr>
</tbody>
</table>

'passing' T/R ratio range increases with study size

- N=104, $\sigma_b^2 = 0$
- N=26, $\sigma_b^2 = 0$
- N= 26 or 104, $\sigma_b^2 = 0.03$
Objective #2:
Assess the impact of batch-to-batch pharmacokinetic variability on bioequivalence testing

Results:
When batches differ but only a single batch is used in BE testing the result of the study isn’t easily interpreted; repeated studies may give different results, and the observed batch ratio may differ substantially from the true product ratio. Agreement between single batches to within 80-125% delivers to the patient products that may agree much less well.
Objective #3:
Consider potential solutions to batch-to-batch pharmacokinetic variability in bioequivalence testing
In response to a request for regulatory guidance regarding batch-to-batch variability in bioequivalence testing, the EMA Pharmacokinetics Working Party recommended that, “before the in vivo comparison, several batches of both test and reference products could be tested (in vitro) to identify representative batches.... of test and reference, respectively”. The premise of batch selection via in vitro screening, assuming there exists an in vitro metric that accurately predicts in vivo metric, is that uncertainty in the pharmacokinetic estimate due to batch-to-batch variability can be reduced to a negligible level by increasing sample size.
Fluticasone dry powder pharmacokinetics is not well predicted by inertial impaction

single-dose, 4-way crossover in 24 adult subjects
100 µg fluticasone propionate/50 µg salmeterol ODPI

Oriel Therapeutics Study OTT329/213
Randomly selected reference batches fail a two-way PK bioequivalence study in 3 of 4 attempts.

In vitro inertial impaction doesn’t correlate with PK

Fluticasone in vitro fine particle mass batch ratio

FP Cmax R- vs-R Geometric Mean Ratio (90% CI)
Scaling the Bioequivalence Standard to the Performance of the Reference

A single-batch two-way PK bioequivalence study yields poor precision in the T/R product ratio estimate when batches vary. … But, I would suggest that batch variability in an approved Reference product indicates a wide therapeutic index.

Since for wide therapeutic index products, the bioequivalence limits are widened to reflect a less stringent equivalence requirement, couldn’t this be an appropriate approach?
Batch variability requires modification to BE methodology

When \(\sigma_b^2 > 0 \), the correct 90% CI illustrates the futility of the two-way crossover.

Incorporate multiple batches in the BE assessment

When \(\sigma_b^2 > 0 \) widens the T/R distribution, allow the BE goalposts to respond.

Extend the Highly Variable Drug Reference-scaling methodology

\[\frac{\sigma_b^2}{\sigma_e^2} = 0 \]

\[\frac{\sigma_b^2}{\sigma_e^2} = 0.5 \]

Expected T/R ratio distributions from a 2-way crossover BE study; N=26 subjects, 20% residual error, T/R = 1.
Inclusion of multiple batches directly addresses batch variability

Orally-inhaled drug product *in vitro* bioequivalence testing already requires multiple batches:

Recommendations Related to the Batch Size Recommendation for In Vitro BE Studies:

1) In vitro BE studies for Budesonide Inhalation Suspension should generally be performed on samples from each of three or more batches of the test product and three or more batches of the reference listed drug.

2) The number of units per batch to be studied should not be fewer than 30 for each strength of the test and reference products (i.e., no fewer than 10 from each of three batches).

FDA Draft Guidance on Budesonide. Sep 2012

Multiple-batch study designs don’t increase number of subjects, and offer opportunity for a form of Reference scaling
Objective #3:
Consider potential solutions to batch-to-batch pharmacokinetic variability in bioequivalence testing

Potential approaches:
◦ Adapt the bioequivalence criterion to reflect variability of the Reference (i.e., extend Reference scaling)
◦ Consider more than one batch, when batches differ

In vitro screening to select a ‘typical’ batch
Direct incorporation of multiple batches in the PK bioequivalence study
Ensuring patient access to substitutable generics

1. The PK of an example dry powder inhaler differs among batches; this reflects industry experience with inhaled drug products.

2. The single-batch two-way PK BE bioassay has reduced decision-making value when batches differ, unless only broad agreement between products is of interest. Reference-scaling principles have not been extended to batch variability.

3. Increasing batch sample size (in vivo, or in vitro if there is a predictive method) addresses batch variability, but does not circumvent an accounting for uncertainty due to sample size.

4. For some inhaled products, the PK bioassay provides product information (e.g., in vivo dissolution rate) not captured by other bioequivalence tests.

Examination of the BE standard for products with substantial between-batch variability warrants further analysis by both regulators and sponsors.
Thank you for your attention

A copy of the slides can be obtained from Leslie.Benet@ucsf.edu