Importance of Dissolution and Drug Release Testing

Vinod P. Shah, Ph. D., FAAPS, FFIP
Pharmaceutical consultant
(Formerly with US FDA)

3rd MENA Conference on Bioavailability, Bioequivalence and Dissolution

Amman, Jordan. September 24-25, 2018
Outline

• Importance of Dissolution
• Biowaiver → Reducing regulatory burden
• Progressive application of dissolution:
 Dissolution – BCS – BDDCS
• Drug Release - Novel dosage form
• Product quality and product performance test
• Predictive drug dissolution / simulation
• Biorelevant – Clinically Relevant - to QC !!!
• Clinically relevant specifications →
 Patient-focused Quality Standards
Dissolution Test

• It is the most useful single physicochemical test for assessment of drug product quality and drug product performance

• To assess batch to batch quality

• The release specifications (QC test) allows batch release into the market place and assures product performance

• Functions as a signal of BioInequivalence
Dissolution Related Guidances

- IR Dissolution Guidance
- ER (IVIVC) Dissolution Guidance
- BCS (Waiver) Guidance
- General BA/BE Guidance
- SUPAC Guidances (IR, MR, SS)
- IR / HS drug substance / Dissolution Guidance
- Product Specific (draft) guidances with IVRT

http://www.fda.gov/cder/guidance/index.htm
Dissolution and Drug Release Tests

• General Chapters in USP

 <701> Disintegration
 <711> Dissolution
 <724> Drug Release
 <1092> The Dissolution Procedure: Development and Validation
 <1094> Capsules – Dissolution Testing and Related quality Attributes
 <1724> Semisolid Drug products – Performance Tests
Dissolution Guidance

• Provides recommendations on the development of dissolution / drug release test methodology, approaches for setting specifications and the regulatory applications

• Provides methods for dissolution profile comparison and indications as to when dissolution is sufficient for biowaivers
Dissolution Test

• Mild enough to detect manufacturing and process variables that may affect in vivo performance of the product

• Should not be overly discriminative

• Basket (100 rpm) or Paddle (50-75 rpm) in 500-1000 mL of aqueous medium

• Use of surfactant with justification
New and Generic Medicines

• **New Medicines (NDA)**
 – Based on the experience gained during the drug development process and in vivo performance of appropriate test batches
 – Based on acceptable clinical, pivotal bioavailability and/or bioequivalent batches

• **Generic Medicines (ANDA)**
 – Generally the same as first entry (pioneer) drug product
 – Based on the acceptable bioequivalent batch
Dissolution Specifications

Immediate Release Drug Products

- **Single Point**
 - For routine quality control test

- **Two Points**
 - For characterizing the quality of the drug product (also for use as a QC test)

- **Profile**
 - Profile comparison for granting biowaivers
 - For accepting product “sameness” under scale-up and post-approval changes
Dissolution of Poorly Water Soluble Drugs in Oral Dosage Forms

Use of Surfactants
with Justification

(Lowest amount of surfactant must be used)
Dissolution – Gelatin Capsules

• Capsules – Pellicle formation due to cross linking
• Use and selection of enzyme (2nd tier) based on pH of the dissolution medium (dm)
• Dissolution medium with pH equal or below 4.0
 Enzyme pepsin – activity of NMT 750,000 U/L of the dm.
• Dissolution medium with pH above 4.0 and below 6.8.
 Enzyme papain – activity of NMT 550,000 U/L of the dm
 or bromelain – activity of NMT 30 GDU/L of dm.
• Dissolution medium with pH equal or above 6.8. Enzyme:
 pancreatin – activity of NMT 2000 U/L of the dm.
• Pre-soaking with enzyme – if surfactant is in the dm.
Extended Release Drug Products

• **Profiles**
 – In multimedia, different pHs
 – Influence of agitation

• **Specifications**
 – Profiles with at least 3 to 4 points
 – Range of dissolution at all points
 – Time: 1 or 2 Hrs, around 50 % dissolution and around 80% dissolution
Progressive Application of Dissolution

Dissolution

Quality Control

SUPAC

Biowaiver

BCS → BDDCS
Progressive Application of Dissolution and Related Concepts

- **Process / Steps**
 - Drug release, Dissolution
 - Solubility, Permeability, Dissolution
 - Drug Disposition, Effect on transporters

- **Test / Concept**
 - 1975 Dissolution test
 - 1995 Biopharmaceutics Classification of Drugs (G. Amidon, et. al.)
 - 2005 Biopharmaceutics Drug Disposition Classification System (Wu and Benet)

- **Impact**
 - 1975: Process control, Batch-to-batch Quality control, Quality assurance, SUPAC related changes – Assurance of product sameness
 - 1995: Biowaiver for BCS Class 1 Drugs (FDA, 2000), Biowaiver for BCS Class 1, 3 and Weak Acids (WHO, 2006)
 - 2005: Predict Drug Metabolism, Drug Transport-Enzyme interplay, Potential Drug-Drug interaction in the intestine and liver

Dissolution

• Dissolution testing remains one of the pharmaceutical industry’s most straight forward, least expensive QC tools to assure product performance.

• Dissolution test distills all the information that is known about the performance of a pharmaceutical product in a laboratory setting.

• Research is now focused on ways to extend and improve IVIVC and make real-time release testing reality.

• Research in computer simulation, PBPK modeling and predictive in vivo dissolution is on the rise.
Dissolution Related Guidance

FDA Guidance for Industry:

• Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solids Oral Dosage Forms based on a Biopharmaceutics Classification System. December 2017

Dissolution Guidance
(IR HS Drug Substance)

• IR products with **highly soluble drug substance**
• Standard release test and criteria may be used in lieu of extensive method development and acceptance criteria-setting exercises.
• Establishes standard dissolution methodology and acceptance criteria for highly soluble drug substances.
• No requirement to show discriminatory ability of the dissolution method for drug products with HS drug substance.
• Follow BCS guidance to establish that the drug product contains highly soluble drug substance.
• Replaces draft dissolution guidance (for BCS 1,3) of Aug 2015.
• Drug substances that are not highly soluble, follow the recommendations in August 1997 dissolution guidance.
Dissolution Guidance
(IR HS Drug Substance)

- Applicable to solid orally administered IR drug products such as tablets and capsules.
- **Not** applicable for orally disintegrating tablets (ODT)*
- **Not** applicable to sublingual dosage form*
- **Not** applicable to NTI drugs
- May be applicable to chewable tablets if the dissolution studies are conducted on the intact tablets and the product meets the conditions described in the guidance.

* This guidance can be applicable, if the absorption from the oral cavity can be ruled out.
Dissolution Guidance
(IR HS Drug Substance)

Standard Dissolution Testing Conditions

• Basket Method (USP apparatus 1)
 – Stirring rate = 100 rpm
 – 500 ml. of 0.1N HCl in aqueous medium (900 ml with justification)
 – No surfactant in medium
 – 37 ± 0.5°C

• Paddle Method (USP apparatus 2)
 – Stirring rate = 50 rpm (75 rpm with justification)
 – 500 ml. of 0.1N HCl in aqueous medium (900 ml with justification)
 – No surfactant in medium
 – 37 ± 0.5°C

• Dissolution Acceptance Criteria
 – Q = 80% in 30 minutes
Dissolution Based Biowaivers

• **Conventional Release Products**
 - Lower strengths, proportional formulations, dissolution profile comparison, f_2
 - Drug products with highly soluble drug substances (BCS)

• **Extended Release Products**
 - Lower strengths, proportional formulations and same release mechanism
 - Beads in a capsule - Profile comparison in one medium
 - Tablets - Profile comparison, pH 1.2, 4.5, 6.8
Pharmaceutical Dosage Forms

• Traditional solid oral dosage forms → **dissolution test** e.g., tablets, capsules, suspensions

• Novel dosage forms → **In vitro release test** e.g., transdermal, semisolids, liposomes, stents, implants, inhalation products,
Dosage Form Tests

• **Product Quality Test**

 Intended to assess attributes such as assay, content uniformity, pH, minimum fill, microbial limits

• **Product Performance Test**

 Designed to assess product performance and in many cases relates to drug release from the dosage form.
Pharmaceutical Dosage Forms

- Oral – Dissolution test
 - Tablets, capsules, suspension
- Topical – Drug release test
 - Semisolids: cream, ointment, gel
- Parenteral – Drug release test
 - Liposomes, microspheres, emulsion
- Mucosal – Drug release test
 - Suppositories, medicated gum
- Inhalation – Particle size distribution and dissolution (!)
Dosage Form Taxonomy (USP)

<table>
<thead>
<tr>
<th>Route of Administration</th>
<th>Intended site of release</th>
<th>Dosage Form Examples</th>
<th>Dosage Form Quality Tests</th>
<th>Dosage Form Performance Tests*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parenteral</td>
<td>Body tissues and fluids</td>
<td>Injectables, Liposomes, micro and nano particles, implants, stents</td>
<td><1></td>
<td><1001>**</td>
</tr>
<tr>
<td>Oral</td>
<td>Gastro intestinal tract</td>
<td>Tablets and capsules, liquids</td>
<td><2></td>
<td><701>, <711></td>
</tr>
<tr>
<td>Topical / Transdermal</td>
<td>Skin</td>
<td>Semisolids, TDS</td>
<td><3></td>
<td><724>, <1724></td>
</tr>
<tr>
<td>Mucosal (Local or Systemic)</td>
<td>Mouth, eye, ear, rectum, vagina, intra-uterine</td>
<td>Films, tablets, liquids, suspensions, suppositories</td>
<td><4></td>
<td><1004>**</td>
</tr>
<tr>
<td>Inhalation</td>
<td>Nasal cavity, lung</td>
<td>Liquids, aerosols, powders</td>
<td><5></td>
<td><601>, <602>, <603>, <604>, <1601></td>
</tr>
</tbody>
</table>

*Tests indicate the specific tests used for each dosage form, with numbers referring to specific USP chapters or sections for more detailed information.
Role of Dissolution Testing in Regulating Pharmaceuticals

- Increasingly, in vitro dissolution testing is relied on to assure product performance.

- An appropriate dissolution test procedure is a simple and economical method that can be utilized effectively to assure acceptable drug product quality.

- Appropriate dissolution test can be used as a surrogate marker for BA/BE.
Moving on …

in the Field of Dissolution Testing

• Clinically relevant dissolution specs – PB/PK modeling/DT

• Predictive dissolution / simulation to assure therapeutic efficacy and safety – biopredictive dissolution testing

• QbD/Design Space – critical product attributes
Oral drug products

BCS

- High Permeability
 - High Solubility
 - BCS class 1
- Low Permeability
 - High Solubility
 - BCS class 3

Topical drug products

TCS

- High Permeability
 - Low Solubility
 - BCS class 2
- Low Permeability
 - Low Solubility
 - BCS class 4

- Q1, Q2 Same
 - Q3 Same
 - TCS class 1
- Q1, Q2 Different
 - Q3 Same
 - TCS class 3
- Q1, Q2 Different
 - Q3 Different
 - TCS class 4

Biowaiver

- ↑ Biowaiver
- ↑ BE
- ↑ Biowaiver
- ↑ BE

Importance and Role of Dissolution Testing

• Increasingly in vitro dissolution testing is relied on to assure product performance

• An appropriate dissolution test procedure is a simple economical method that can be utilized effectively to assure acceptable drug product quality.
Conclusions

• Dissolution test has emerged as a most useful physicochemical test for assessment of drug product performance.

• Dissolution test is a biowaiver tool for reducing regulatory burden and maintaining drug product quality.
Thank You for Your Attention