Role of Dissolution in Regulating Pharmaceutical Products

Vinod P. Shah, Ph. D.
FIP/SIG Chair, Regulatory Sciences
Pharmaceutical Consultant
North Potomac, MD. USA

2nd MENA Conference on Bioequivalence, Biowaivers, Bioanalysis and Dissolution
Amman, Jordan
September 15-17, 2015
Outline

• Dissolution
• Biowaiver
• SUPAC – IR, MR, SS
• Progressive application of dissolution: Dissolution – BCS – BDDCS
• Product Quality and Product Performance Tests
• Reducing regulatory burden: Increasing importance of dissolution
• Topical: Q1, Q2, Q3
• Novel dosage form
Dissolution Test

• It is the most useful physicochemical test for assessment of drug product quality

• To assess batch to batch quality

• The release specifications (QC test) allows batch release into the market place

• Functions as a signal of BioInequivalence
Policy Related Dissolution BA/BE Guidances

- IR Dissolution Guidance
- ER (IVIVC) Dissolution Guidance
- BCS (Waiver) Guidance
- General BA/BE Guidance
- SUPAC Guidances (IR, MR, SS)

http://www.fda.gov/cder/guidance/index.htm
New and Generic Medicines

• **New Medicines (NDA)**
 - Based on the experience gained during the drug development process and in vivo performance of appropriate test batches
 - Based on acceptable clinical, pivotal bioavailability and/or bioequivalent batches

• **Generic Medicines (ANDA)**
 - Based on the acceptable bioequivalent batch of the drug product
 - Generally the same as first entry (pioneer) drug product
Dissolution and Drug Release Tests

• General Chapters in USP
 <701> Disintegration
 <711> Dissolution
 <724> Drug Release
 <1092> The Dissolution Procedure: Development and Validation
 <1094> Capsules – Dissolution Testing and Related quality Attributes
 <1724> Semisolid Drug products – Performance Tests
Dissolution Test

- Mild enough to detect manufacturing and process variables that may affect in vivo performance of the product
- Should not be overly discriminative
- Basket (100 rpm) or Paddle (50-75 rpm) in 500-1000 mL of aqueous medium
Dissolution Guidance

• Provides recommendations on the development of dissolution test methodology, approaches for setting specifications and the regulatory applications

• Provides methods for dissolution profile comparison and indications as to when dissolution is sufficient for biowaivers
Test Conditions: Immediate Release Drug Products

- **Apparatus**
 - Apparatus 1 (Basket), 50/120 rpm
 - Apparatus 2 (Paddle), 50-75 rpm

- **Medium**
 - Aqueous Medium, pH 1.2 – 6.8
 - For sparingly water soluble drugs – use surfactant - must be justified, lowest amount must be used
 - 500-1000 ml at 37 ± 0.5°C

- **Sampling Times**
 - 15 minute intervals until 85 % dissolution
Dissolution Specifications

Immediate Release Drug Products

• **Single Point**
 - For routine quality control test

• **Two Points**
 - For characterizing the quality of the drug product (also for use as a QC test)

• **Profile**
 - Profile comparison for granting biowaivers
 - For accepting product “sameness” under scale-up and post-approval changes
Dissolution Testing of Poorly Water Soluble Drugs in Oral Dosage Forms

Dissolution of Poorly Water Soluble Drugs in Oral Dosage Forms

• Use of Surfactants
 – Why? What is Alternative?
• Types of Surfactants
• Methodology
 – Justification for surfactant use
 – Lowest amount of surfactant must be used
Surfactants

- Sodium Lauryl Sulfate (SLS)
- Sodium Dodecyl Sulfate (SDS)
- Labrasol
- Polysorbate 20
- Polysorbate 80
- Brij-35
- Triton X – 100
- POE 10 – Lauryl Ether
- N,N-dimethyldodecylamine-N-oxide
- HDTMA (CTAB)
WATER INSOLUBLE DRUG: DANAZOLE 200 MG CAP DISSOLUTION IN PRESENCE OF SLS

PADDLE 75 RPM IN DIFFERENT MEDIA

- 1.0% SLS/W
- 0.75% SLS/W
- 0.5% SLS/W
- 0.25% SLS/W
- 0.1% SLS/W
- pH 7.4

PADDLE 75 RPM, 0.75% SLS/W.

- STERLING 50 MG
- STERLING 200 MG
- STERLING 100 MG
- AM. THER. 200 MG
Dissolution – Gelatin Capsules

- Capsules – Pellicle formation due to cross linking
- Use and selection of enzyme (2nd tier) based on pH of the dissolution medium (dm)
 - Dissolution medium with pH equal or below 4.0
 Enzyme pepsin – activity of NMT 750,000 U/L of the dm.
 - Dissolution medium with pH above 4.0 and below 6.8.
 Enzyme papain – activity of NMT 550,000 U/L of the dm or bromelain – activity of NMT 30 GDU/L of dm.
- Pre-soaking with enzyme – if surfactant is in the dm.
Extended Release Drug Products

• Profiles
 – In multimedia, different pHs
 – Influence of agitation

• Specifications
 – Profiles with at least 3 to 4 points
 – Range of dissolution at all points
 – Time: 1 or 2 Hrs, around 50% dissolution and around 80% dissolution
ER Products
Dissolution Studies in Alcohol

• Due to concerns of dose dumping when taken with alcohol, additional dissolution testing using various concentrations of ethanol in the dissolution medium is required:
 - T and R product, 12 units in each case, data collected every 15 minutes for 2 hours

• Proposed method (without alcohol)
 • 5% (v/v) alcohol
 • 20% (v/v) alcohol
 • 40% (v/v) alcohol

(e.g., Oxycodone, Trazodone, Bupropion, Venlafaxine, Lamotrigine, Quetiapine Fumarate, Ropinirole)
Progressive Application of Dissolution

Dissolution

Quality Control

SUPAC

Biowaiver

BCS
Progressive Application of Dissolution and Related Concepts

Process / Steps
- Drug release, Dissolution

Test / Concept
- 1975 Dissolution test
- 1995 Biopharmaceutics Classification of Drugs (G. Amidon, et. al.)
- 2005 Biopharmaceutics Drug Disposition Classification System (Wu and Benet)

Impact
- Process control
- Batch-to-batch Quality control
- Quality assurance
- SUPAC related changes – Assurance of product sameness
- Biowaiver for BCS Class 1 Drugs (FDA, 2000)
- Biowaiver for BCS Class 1, 3 and Weak Acids (WHO, 2006)
- Predict Drug Metabolism
- Drug Transport-Enzyme interplay
- Potential Drug-Drug interaction in the intestine and liver

Dosage Form Tests

• **Product Quality Test**

 Intended to assess attributes such as assay, content uniformity, pH, minimum fill, microbial limits

• **Product Performance Test**

 Designed to assess product performance and in many cases relates to drug release from the dosage form.
Pharmaceutical Dosage Forms

• Traditional solid oral dosage forms → dissolution test e.g., tablets, capsules, suspensions

• Novel dosage forms → In vitro release test e.g., transdermal patches, semisolids, liposomes, stents, implants
Pharmaceutical Dosage Forms

- **Oral** – Dissolution test
 - Tablets, capsules, suspension
- **Topical** – Drug release test
 - Semisolids: cream, ointment, gel
- **Parenteral** – Drug release test
 - Liposomes, microspheres, emulsion
- **Mucosal** – Drug release test
 - Suppositories, medicated gum
- **Inhalation** – Particle size distribution and dissolution (!)
Novel / Special Dosage Forms - Report

FIP/AAPS Joint Workshop Report: Dissolution / In vitro Release Testing of Novel / Special Dosage Forms:

- *Die Pharmazeutische Industrie*:

FIP/RPSGB Workshop in London – October 20-21, 2008
AAPS/FIP Workshop in Los Angeles – November 7-8, 2009
Progressively Reducing Regulatory Burden

Increasing Importance of Dissolution
Progressively Reducing Regulatory Burden

- **Tools**
 - BE Studies
 - Dissolution
 - In Vitro Drug release
 - Dissolution

GENERIC DRUGS
- Optimizing Product Performance
- Maintaining Product Quality

ANDA / BE
- IR and MR Biowaiver
- Semisolds Biowaiver
- IR - Optimum Bioavailability

BCS
- Lower strength
- Q₁, Q₂, Q₃ Lower strength

Medicines Compendium

Ref: VP Shah et.al., The AAPS Journal. 16: 621-624, 2014
Role of Dissolution Testing in Regulating Pharmaceuticals

• Increasingly, in vitro dissolution testing is relied on to assure product performance.

• An appropriate dissolution test procedure is a simple and economical method that can be utilized effectively to assure acceptable drug product quality.

• Appropriate dissolution test can be used as a surrogate marker for BA/BE.
Dissolution Test
Impact

• Assures product quality
• Useful as a bioequivalence test
• Establishes procedures for granting biowaiver
 – New Drug and Abbreviated New Drug
 – Higher strength
 – Lower strength
• Assures product sameness under SUPAC
Conclusions

- Dissolution test has emerged as a most useful physicochemical test for assessment of drug product performance.
- Dissolution test is a biowaiver tool
- Dissolution test is a tool for reducing regulatory burden
Thank You for Your Attention